Run-and-tumble bacteria slowly approaching the diffusive regime
نویسندگان
چکیده
منابع مشابه
Statistical mechanics of interacting run-and-tumble bacteria.
We consider self-propelled particles undergoing run-and-tumble dynamics (as exhibited by E. coli) in one dimension. Building on previous analyses at drift-diffusion level for the one-particle density, we add both interactions and noise, enabling discussion of domain formation by "self-trapping," and other collective phenomena. Mapping onto detailed-balance systems is possible in certain cases.
متن کاملRun-and-tumble particles in speckle fields.
The random energy landscapes developed by speckle fields can be used to confine and manipulate a large number of micro-particles with a single laser beam. By means of molecular dynamics simulations, we investigate the static and dynamic properties of an active suspension of swimming bacteria embedded into speckle patterns. Looking at the correlation of the density fluctuations and the equilibri...
متن کاملDirectional persistence and the optimality of run-and-tumble chemotaxis
E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming (runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisations but it is known that in wild type E. coli, successive run directions are actually weakly correlated, with a mean directional difference of approximately 63 degrees. We recently presented ...
متن کاملJamming and Attraction of Interacting Run-and-Tumble Random Walkers.
We study a model of bacterial dynamics where two interacting random walkers perform run-and-tumble motion on a one-dimensional lattice under mutual exclusion and find an exact expression for the probability distribution in the steady state. This stationary distribution has a rich structure comprising three components: a jammed component, where the particles are adjacent and block each other; an...
متن کاملFirst-passage time of run-and-tumble particles.
We solve the problem of first-passage time for run-and-tumble particles in one dimension. Exact expression is derived for the mean first-passage time in the general case, considering external force fields and chemotactic fields, giving rise to space-dependent swim speed and tumble rate. Agreement between theoretical formulae and numerical simulations is obtained in the analyzed case studies --c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2020
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.101.062607